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ON THE ROLE OF THE SECOND LAW OF THERMODYNAMICS
IN MECHANICS OF MATERIALS

P. M., Naghdil

ABSTRACT This lecture summarizes the recent work of Green and Naghdi
[1,2] concerning the thermomechanics of dissipative materials,
the main features of which are: (a) The introduction of a con-
servation law for entropy which holds for all materials,

(v) the use of the energy equation as an identity for all
processes, thereby leading to restrictions on constitutive
equations, and (c) the development of an inequality representing
a mathematical interpretation of a statement of the second law
of thermodynamics.

1. Introduction

This is an expository account of a new approach to the thermo-
mechanics of dissipative materials proposed in two recent papers by
Green and Naghdi [1,2]. Although this approach already has been extended
to mixtures of interacting continua [3] and to nonlocal elasticity (4],
we confine attention here to classical single phase continua and quote
freely from the contents of [1,2].

In the context of single phase continuum mechanics, a number of dif-
ferent approaches are currently in use for treating the thermomechanical
behavior of dissipative materials and especially for imposing on constitu-
tive equations restrictions demanded by an appropriate form of the second
law of thermodynamics. A prominent approach to the subject utilizes the
Clausius~-Duhem inequality (hereafter referred to as C-D inequality) in
the manner proposed by Coleman and Noll [5}. Although the latter proce-
dure has yielded acceptable results in important special cases, the C-D
inequality has been the subject of much criticism in recent years, for
example by Rivlin [6], by Day [7] and by Green and Naghdi [1,2]. In
general the criticisms stem from two main factors: (1) It is not at all
clear how the basic ideas contained in the statement of the second law of
thermodynamics have been translated into the C-D inequality and (2) the
inability of the C-D inequality to rule out unacceptable behavior in
some materials.

After recalling the conservation laws of the purely mechanical

lDepartment of Mechnnical Engineering, University of California,
Berkeley, California 9U720.




theory (section 2), thermal properties and conservation laws of the
thermomechanical theory arc discussed in section 3. These conservation
laws, in addition to the balance of enerpy (the first law of thermo-
dynamics), include a balance of entropy in the form introduced in [1].

A procedure for the utilization of these conservation laws is outlined
(section 3) and involves the use of the energy equation as an identity for
all motions and all temperature distributions (after the elimination of
the external fields) and leads to restrictions on constitutive equations.
This is illustrated in the case of an elastic material which is taken to
be nondissipative in a sense that is later made precise. Expressions for
external mechanical work and heat calculated in section 4 are then
employed in section 5 to obtain a mathematical interpretation of a state-
ment of the second law representing the notion that in a dissipative
medium it is impossible to reverse completely a process in which mechani--
cal energy is transformed into heat. We conclude this review by mention-
ing in section 6 certain additional features of the approach to thermo-
mechanics proposed in [1,2].

2. Conservation laws in a mechanical theory.

Consider a finite body ® with material points X and identify the
material point X with its position ;, in a fixed reference configuration.
A motion of the body is defined by a sufficiently smooth vector function
X, which assigns position £==&(£,t) to each material point X at each
instant of time t. 1In the present configuration at time t, the body ®
occupies a region of space R bounded by a closed surface . Similarly,
in the present configuration, an arbitrary subset § (g;@) of the body &
occupies a part P (CR) of the region R, bounded by a closed surface 3.

Let p=p(X,t) be the mass density in the present configuration and
designate the velocity vector at time t by v =x, where a superposed dot
denotes material time derivative. We assume the existence of an external
body force Q==h(£,t) per unit mass acting on the body ® in the present
configuration and an internal surface force t=t(X,t;n), called the
stress vector, acting on the boundary2 df with outward unit normal n.

The rate of work by these forces are, respectively, b . v per unit mass
and E. v per unit area.

We adopt the usual conservation equations for mass, momentum and
moment of momentum for every material part SC® occupying a region PZR
and denote the elements of volume and area in the present configuration ]
by dv and da, respectively. Thus, we write i

d '
T dV=0 (l) E
P
%J‘pidv=jp2dv+‘f tda (2)
B P of?
djf pixx‘dv=‘[p£xgdv+‘[ ix};da (3)
P 3 e

with corresponding local forms

]
20f course, when =, { assumes the value of the external traction

on the surface aR.
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div T+pb=pv , t=Tn , (&)
Tr =T .

~

In (), T is the Cauchy stress tensor, ET its transpose, and div stands
for the divergence operator with respect to the place X

3. Thermal properties of the body. Conservation laws in a thermo-
mechanical theory.

We consider now the thermal properties of the body. The absolute
temperature at each material point is represented by a scalar field
8= 08(X,t)>0. We also admit the existence of:

r '=r(£,t) = external rate of supply of heat per unit mass;

-h=-h(X,t ; n) = internal heat flux across the surface 3@ and
measured per unit area of the surface 3P per unit tlme3
We define the quantities s =s(X,t) and k=k(X,t; 2) by

L < h
s-e,k 5 (5)

and call these, respectively, the external rate of supply of entropy per
unit mass and the internﬁl surface flux of entropy across 3f per unit
area of 3P per unit time Also, throughout the body, we assume the
existence of the scalar fields:

0= T\(E,t) = entropy per unit mass;

€= g(i,t) = internal rate of production of entropy per unit mass;

€= e(')f',t) = internal energy per unit mass.

For a body susceptible to both mechanical and thermal effects, the
conservation laws (1)-(3) are supplemented by the balance of entropy

%I pNdv = I p(s+§)dv-I k da (6)
P P ®
introduced in [1] and the balance of energy
L[y yro)ar = [ptrep.ave| (gey-naa , (M
P P P

representing the first law of thermodynamics. Both (6) and (7) hold for
an arbitrary part SC® in the present configuration.

3When P=R, the heat flux h assumes its value on the external

boundary surface R.
L

These terminologies associated for s and k arise naturally from
consideration of the special case of a gus or an inviscid fluid mentioned
later in this section, following Eq. (11).

3




By usual proccdures and under suitable coutinuity assumptions, the
equations resulting frum (G) and (/) arc:

Pﬁ=p(8+g)-divg , k=p.n ,
.o (8)
-p(e-oN)+T-D-pEe-p-g=0 ,

where P is the entropy flux vector, Qg:%(gjk?) is the rate of deformation
tensor, L=grad v, g=grad 6, grad denotes the gradient operator with
respect to x keeping t fixed and the term pg@ in (8); is the contributién
of € to the internal rate of production of heat. From (5)2 and (8)2,
h::eg- n and we may define the heat flux vector q by

q=6p . (9).

~

Introducing the Helmholtz free energy y = y(X,t) per unit mass by

y=¢e-61 , (10)

the energy equation (8)3 may be written in the alternative form
-p(y+M8) +L-D- pg8-p-g =0 . (11)

At this point, it is worth making some observations regarding the
conservation equations (8)l . First, we note that in the special case
of a gas or an inviscid fluié and starting only with the energy equation
and appropriate constitutive equations, it can be demonstrated that two
scalar functions 9,7 exist such that an equation of the form (8)l holds
with s and k given by (5); o and with pgg=-p.pg. This result serves in
part as the motivation for the balance equation (6) which is postulated
to hold for all materials. Second, we have excluded a discussion of jump
conditions at a surface of discontinuity. It should, however, be noted
that the internal rate of production of entropy £ may become unbounded on
a surface of discontinuity in such a way that the volume integral of € in
(6) contributes to the jump condition (see Green and Naghdi (8]). Third,
a more primitive form of balance of energy involves an internal rate of
production of energy. In order to deny the possibility that combined
thermal and mechanical energy can continually be extracted from the body
in closed cycles of deformation and temperature, the internal rate of
production of energy is expressed as the time derivative of an internal
energy density €. See, in this connection, Green and Naghdi [9, p. b2]
and [10, p. 356].

It is customary to regard the temperature @ as an independent thermo-
dynamical variable. Thus, for a given body (having a reference mass
density p (X)), the field equations obtained from the integral forms of
the conservation laws involve a set of 9 functions. These consist of the
deformation function % and the temperature @, i.e.,

{2&:9} (22)
5

and the various mechanical and thermal fields, namely

>The mass density p is not included in (13) and (14) since, given
(12), p can be calculated from the equation for conservation of mass.

L
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{(T,0,¢,>M,€] (13)

and

{b,s} . (14)

We assume that the fields (13) are specified by constitutive equations
which may depend on the variables (12), their space and time derivatives,
as well as the whole history of deformation and temperature. We then
adopt the following procedure in utilizing the conservation laws:

(i) The field equations are assumed to hold for an arbitrary choice
of the functions (12) including, if required, an arbitrary choice of the
space and time derivatives of these functions;

(ii) The fields (13) are calculated from their respective constitu-
tive equations;

(iii) The values of b and s can then be found from the balance of
linear momentum (4), and the balance of entropy (8);;

(iv) The equation (4)) resulting from the balance of moment of
momentum and the equation (g)3 resulting from the balance of energy will
be regarded as identities for every choice of (12). These will then
place restrictions on the constitutive equations.

We note that the quantities €,1,§ may be arbitrary to the extent of
additive functions f,f,-ef, respectively, where f is an arbitrary function
of the variables (12), their space and time derivatives and functionals
of their histories. The additive functions have the property that they
make no contribution to the differential equations for the variables (12)
and the boundary and initial conditions. They also make no cuntribution
to the energy identity (11) and no contgibution to the internal energy €.
We reduce this arbitrariness by setting

r=fx) , =0 . (15)

Then the function £ is determined uniquely and 7| is only arbitrary to, the
exteat of an additive function of X, independent of t. The function # in
(15)1 can thus be determined by specifying a value for 7 in some refer-
ence state. For example, in the case of an elastic medium, we may choose
£ in (15)1 to be a constant value so that T is a constant T, corresponding
to a constant reference temperature if the reference state is homogeneous. 1
Before closing this section, we apply the foregoing procedure to a
discussion of thermomechanical behavior of elastic materials. An elactic 1
material is defined by specifying constitutive equations for the fields
(13) as functions of the variables 3

(E" e’g‘] ’

where F=23x/3X is the deformation gradient and the possible dependence on
X indizéting inhomogeneity is understood. After imposing the usual ;
invariance requirements under superposed rigid body motions of the whole |
body, the constitutive equation for the llelmholtz free energy reduces to

¥ = ;(S,esog) ’ (16)

6For details, see [1, Sec. 2].
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where (= E}Q and 7= Flg, with similar constitutive results for ML,€,p0.
Next, we introduce (lﬁ) alonr with corresponding conctitutive cqunzions
into the energy cquation (11) and demond (by (iv) of section 3) that the
latter, ag well as (1)), Le identically satisfied for cvery choice of the
variables’ (12). This leads to

{I- pg‘(%Jra_ac%)E‘T} .E-P(T\“‘%g‘)é-P %' oé" pE6-P- g = o , (17)

where Q,=2§,TQE.° For given values of the variables which occur in the

argument of y in (16), we may choose D, 8, arbitrarily; and since the
coefficients of D,0 and 0; in (17) are independent of these rate quanti-
ties, we conclude that 3}/9,8=90 ani then deduce that

A A
- - = op(3L 4 QLT
v=9(C8) , M=-3 g—pg(a£+aCT)g (18)
and ~
pE8 =-p-.g . (19)

Clearly (18) and (19), in addition to being necessary, are also sufficient
conditions for the satisfaction of (k4)) and (11) as identities for all
motions and all temperature distributions. With the use of (19), (5) and
(9), (8)) reduces to

pr - div g = pen (20)

for an elastic material. The results (18) and (20) are, of course, the
same as those found by Coleman and Noll [5]) using the C-D inequality.
Here, however, no appeal has yet been made to a second law of thermo-
dynamics.

The results (18)-(20) include those for an inviscid fluid when the
dependence of the fields (13) on ¢ 1s assumed to occur through det C or
equivalently through the mass density p.

L, External supplies of mechanical work and heat.

Preliminary to the discussion of the second law, we need to record
the expressions for the external mechanical work and the external heat
supplied to a material purt SC® during the time interval 8=[t;,t5] in
the present confijuration. First, however, we observe that in the case
of an elastic material the response functions for ¢,T,e depend only on
the deformation gradient F and the temperaturc 6 and are independent of
their rates and the tempcrature gradient g. Such an elastic material
will be regarded ss nondicsipative in 2 sense thut will be made precise
later; and, in conjunction with an expression for the external mechanical
work supplied to any pnrt §, will be used as a basis for establishing
later an inequalily representing the second law of thermodynamics for
dissipative materials Keeping this background in mind, w~e assume that
the constitutive response functions for ¢,T include also dependence on
the list of variables F,0,( and their higher space and time derivatives
and refer to this list collecctively as y. Further, let e',n' denote
the respective values of e,7 when the set i is put equal to zero in the

7

Recall (iii) of section 3.




.8
response functions™. Thus, for example,

/

€ = 6(!:,6;1!) s € = 5,(}:”9) = G(E,G,O) ’
.. (21)
U""(E:e:’[}‘:"') )

yherg the dots in (21), refer to the higher space and time derivatives of

E;6,g. Then, with the help of (4) and the integral of (7) with respect to
time, we obtain

W = External mechanical work supplied to a part § of the
body during the time interval J= [tl,tz]
= [ W(elas = ak(e) + aE(P) + B+ 1, (22)
and ’
H = External heat supplied to a part $ of the body

during the time interval &= [tl’th

[ ateras = - (Brw,) (23)
S

where the prefix A denotes the "difference" cperation on functions and
fields during the time interval §, e.g., 8K=¥(t,) - K(t;). Also, in
(22) and (23) the functions W,K,E ond Q representing the rate of work by
body and surface forces, the kinetic energy, ihe internal energy and the
total external supply of heat, respectively, are defined by

w(P) = I pL . v dv+vJ t-vda |,
PN ~s ~ "~

P
K(@) = j %pi- ydv o, E(P) = j pe dv (2k)
P P
a@ =[erav-[ g-naa ,
_ P o
the quantities W and w, are
W= - f j peﬁ'dv at “b = j j pw*dv dt €3)
Jglp $'p
and
X -, .
pw = pen’ - (pr-div q)
= plw - (e-¢’)]
=-ple-en') +T -1 (26)

8Thcse definitions of ¢’,M’ do not exclude their dependence on the
past histories of F¥,@, (sce section 6 of [1]).

7




pw == p(y'+n'@) L. D

ply -4+ (1-1")8) +pgo+p- g (27)

where y'=¢’-6n'. IL is clear from (26G), that in situations where
¢ does not depend on the list of variables (21)3, then ¢ =¢’ and w* becomes
identical to w.

In the case of an elastic material, since the function Q in (18)L is
independent of the variables y in (21);, it is clear that y=y¢’, T=1
(and hence ¢=¢’'). Moreover, in this tase, by virtue of (19) and (27).;
we also have w=0. Thus, for an elastic material w*=0 and w, =0 by (55)2.
We make use of this latter result in the next section and regard the
elastic body, which has the value zero for ,, as a reference (or "yard-
stick") from which the dissipation of mechanical energy into heat is '
calculated.

5. The second law of thermodynamics. Restrictions on heat conduction
vector and internal energy.

In the first law it is assumed that mechanical energy can be changed
into heat energy and conversely, and no restriction is placed on the
transformation of one into the other. It appears to be a fact of experi-
ence that whereas the transformation of mechanical energy into heat, for
example through friction, is not limited by any restrictions, the reverse
transformation, namely that of heat into mechanical energy, is subject to
definite limitations. This fact has been incorporated into a number of
different statements, each of which is then usually called the second law
of thermodynamics. It is often asserted that the various statements of
the second law are equivalent although proofs of this are far from con-
vincing and usually limited to special situations. For example, & form
of second law attributed to Kelvin (1851) is9:

(A) It is impossible to construct an engine which would extract
heat from a given source and transform it into mechanical enerfy, without
bringing about some additional changes in the bodies taking part. A
slight variant of this statement which involves periodic cycles is due to
Planck and is knownas the Kelvin-Planck statement of the second law.

Another form of the second law is:

(B) It is impossible completely to reverse @ process in which energy
is transformed into heat by friction.

There are other statements of similar character such as that due to
Carathdodory. A somewhat different idea seems to be involved in the form
of the second law attributed to Clausius (1850):

(C) Heat cannot pass spontaneously from a body of lower temperature
to a body of higher temperature.

A statement such as (C) does not necessarily involve the concept of
mechanical work since il could be applied to rigid heat conducting solids,
but many books contain "proofs" that (C) is cquivalent to (A) or (B).

Although the first iwo of the above statemecnts convey the ideas that
some restrictions must be placed on the interchangeability of energy due

9The various versions of the second law are recalled here as state-
ments (A), (B) and (C). These or variants thereof can be found in
standard books on thermodynamiecs, e.g., Schmidt [11], Zemansky [12] and
Pippard {13].




: to heat und mechanical work, they are not precise.  Attempls to make this
: notion precise in the context of single phase conlinuwn mechanics have led
to controversy, although there is a measure of agreement about mony of the
results which emerge from the restrictions. Most trouble secems Lo center
on the concept of entropy, even though none of the above statements involve
entropy or appear to lead to its existence, except in special cases. In
recent years, some workers in continuum mechanics have postulated the
existence of a scalar field, called entropy, the production of which is
{ restricted by the Clausius-Duhem inequality, and this is regarded as
representing the second luw of thermodynamics. With the help of this
_ inequality restrictions are placed on constitutive equations, and some of
r these restrictions dv seem to embody concepts contained in statements such
i as (A), (B) or (C). However, the approach based on the C-D inequality has
i : certain shortcomings which have already been mentioned in section 1.
Before proceeding further, we recall that a state of the body (or its
part SE}G) at time t is described by the position vector % and the tem-
perature § throughout the body together with the constitutive response
functions for the fields (13). Once the response functions are given, we
can then calculate the valuss of E,K,lp and W, in (24) and (25). A thermo-
mechanical process, or simply a process, is a time sequence of states; it
is a continuous oriented curve in the space of states. Thus, a process
may be defined by a sequence of values of §,x throughout the body in the
time interval [0O,o5]. Similarly, the reverse process is defined by a
sequence of values of @,x throughout the body in the time interval [o,20]
subject to the conditions

;" . ] 8(t) = o(20-t) , =x(t) = x(20-t) . (28)

-—m— e

The statements (A), (B) and (C) of the sccond law appear to involve
different concepts: one is concerned with transformation of heat into
mechanical energy being subject to definite limitations, while another
deals with heat not being able to pass spontaneously trcm a bedy at lower

. temperature to one at higher temperature. In our discussion of the second
law, we separate the notion of recoveralle work in dissipative materials
from that of conduction of heat. With reference to the former, we con-
sider now a masthematical statement of the nolion that in a dissipative p
medium it is impossible to reverse completely a process in which mechani-
cal energy is transformed into heat. To this end, we observe that in any :
process the work done by the external mechanical forces acting on § is ?
positive or negative drpending on whether the cxternal work 1s supplied |
to, or is withdrawn from 5. 1n genersl, some of the work done resulis in

a change of the kinetic and internal cnergies represented by the first '
two terms on the right-hand side of (22\2, rcach of which may be positive, ‘

negative or zero. Also, part of the work done may be positive with a
corresponding extraction from § as heat, or negative with a corresponding
absorption of heat by 9.

As already noted in section &, for an clantic body W, =0, and the
different contributions to W defined by (22) will vary in sign depending
on the process snd will not be restricted to be either positive or nega- f
tive for all prucesces. Concider any cmooth process in the time interval ‘
[0,0], starting from rest with y(0) =0 and ending at rest with v(g)=o0.

Then, for its reverse process in the time interval [g,2g], we also have
F(t)=F(20-t), v(t)=-v(20-t) in view of (28). It follows that at the
end of the process and its reverse process pg-=0, 47=0, AF=0, Av =9 and
hence for an elactic body, de =0, AN =0, AE =, A=y, Ag=0, AE=0,

gl
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AK=0, so that the body hus returned to its oripginal stote. ‘Then, all
the work done in the process is recovercd as work in the reverse process
This recovery of work would not be possible if in every arbitrary process
purt of b always has o positive sign, since Lhis part of W would then
yield positive work both in the process and the reversc process.

With this motivation for recoverable work in a process, we assume
that for any arbitrary process in » dissipative material only part of the
work done is recoverable as work, the rest being transformed into heat.
We therefore assume that in every process part of the work done is always
nonnegative. Then, if at the end of anf process and its reverse process
the body has returned to the same state l, some of the work done is always
transformed into heat. Recalling that Wy, =0 in (22) in the case of an
elastic material for all processes, we inter ret the above assumption for
a dissipative material as

W, 20 (29)

for all material parts $ and all thermomechanical processes. Since tl,t2
in the time interval § are arbitrary and since pw* has already been
assumed to be continuous, it follows that I pw*dvé()fbr all arbitrary .
Hence, it follows from (29) thatl?2 e

*
W

o . (30)

v

The procedure of section 3 and the thermodynamical inequality (30)
have been applied by Green and Naghdi to & viscous fluid and to materials
with fading memory [1, Secs. 5,6] and to elastic-plastic materials [1L].
Also, Green and Naghdi [2] have studied the implications of the inequality
(30) in regard to the classical statements of the second law of thermo-
dynamics associated with cyclic thermomechanical processes. In particular,
in {2, Sec. 4] attention is called to the fact that for some materials,
such as a general viscoelastic material or an elastic-plastic material of
the type discussed in [1h]}, the usual four statements for cyclic motions
associated with the second law are not applicable.

We now supplement the proposed inequality (30) with two further
inequalities which stem from the statement (C) above. As in [1], consider
first only the heat flux response in equilibrium cases for which heat flow
is steady. By equilibrium, we mean that

v=o0 , i =0 , =0 for all t s

where F and 9, as well as all other rclevant functions, are independent
of t (but may depend on i)' For these equilibrium cases, we adopt the

loIf work is extracted in the process, then it is absorbed by the
body in the reverse process.

llIn this case, a process and its reverse process together constitute
a special type of cyclic process.

l2The inequality (?9) was first proposcd in [2]. Previously, in [1,
Sec. 4], a different mathematical interpretation of the same statement of
one version of the second law was given in which E in (22) was replaced by
E'(p) = j pe‘dv and w¥* in (26) by w in (27). For a wide variety of mate-
rials in "which €= ¢’ the two conditions coincide.

10




classical heat conduction inequality

A (31)

for all time-independent temperature fields. We recall that when q is
parallel to the temperature gradient g, (31) implies that heat flows in
the direction of decreasing temperature.

For many materials of interest, the thermomechanical response of the
medium is characterized in terms of certain kinematic and thermal vari-
ables (such as F and §) and their gradicnts but not their rates. In such
cases, once the heat flux response function has been restricted by (31),
the resulting conditions remain valid for all values of kinematic and
thermal variables and not just the time-independent ones.

To obtain the second inequality mentioned above, let the continuum be
in the state of rest with v=o0 for all time and with the deformation
gradient F everywhere constant for all time. Then, D=0 everywhere and
it follows from (h)l that p is independent of t. In additicon, we restrict
the temperature field to be spatially houmogeneous so that o=0(t). Keep-
ing these in mind, from a combination of (8); and (8)3 vwe have

pr - div q = pe . (32)
Since v =0 everywhere, no mechanical work is supplied to the body. Then,

using (32) and (23), the cxternal heat supplied to a part § of the body
during the time interval [ty,t,] is

o= AE(P) . (33)

We now suppose that the body has been in thermal equilibrium during some
period up to the time tJ with constant internal enerpgy e, and ccnstant
temperature 6,. We then assume that whenever heat is continually supplied
to a part @ according to (33), the temperature §(t) throughout the part .
will be increased, i.e.,

48 > O whenever M > 0 . (34)
Further, assuming suitable continuity, it follows from (33) and (34) that

468 > O whenever fAg > O (39)
for all t, >ty.

6. Concluding reamarks

The main differences between the recent approach to thermomechanics
of single phase continua proposed by Green and Naghdi [1,2] and that
based on the use of the C-D inequality are: (a) The introduction of a
balance of entropy (6), along with the use of the encrgy equation as an
identity for all thermcmechanical processes; (b) a mathematical inter-
pretation of a statement of the second law leading to the inequality (30),
which represents the notion that in a discipative mediwm it is impossible
to reverse completely a process in which mechanical energy is transformed
into heat; and {(¢) a restriction on change of temperature from equilibrium
upon the addition of heat [see (35)} to accompany the classical restric-
tion on the heat flux vector.

11
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Several criticioms of the use of the C-D inequality were cited in
section 1. One of thesce Ly Day [7]) arises from consideration of an
ir. .ial boundary-value problem for the determination of the temperature
field in a rigid hcat conductor wilh memory. le shows that the value of
entropy is not unique even though the internal encrgy and the heat con-
duction vector are uniquely determined. As already noted in [1], Day's
criticism does not apply to the developments presented here.

We now make some observations regarding the procedure proposed in
[1,2). First, we recall that the field equations resulting from momentum
balance involve only the mechanical response functions while that obtained
from balance of energy involves both the thermal and the mechanical re-
sponses. In the traditional developments of thermomechanics, after the
specification of constitutive equations, the former field equations yield
a system of differential equations for the determination of deformation °
while the latter is regarded as a differential equation for the determina-
tion of temperature, after elimination of the external body force with the
use of the local equations of motionl3. 1In contrast, the development of
Green and Naghdi [1,2] is such that the balance of entropy, which involves
only the thermal responses, provides the differential equation for the
temperature in parallel with the fact that the differential equations for
the deformation are derived from the balance of momentum. Consistent with
this, the energy equation (after the elimination of the external body
force and the external heat supply) is employed as an identity for all
thermomechanical process; and, hence, it does not yield any new dif-
ferential equation for temperature or deformation. It is noteworthy that
the energy equation as used here provides all the essential results —
other than those arising from inequalities —concerning the relationships
between the constitutive responce functions or functionals prior to any
appeal to a second law of thermodynamics. In this sense, the inequality
(30) has been assigned a more subdued role relative to those of the con-
servation laws; and, in the main, this has been the spirit of the contents
of [1,2] in regard to the type of restrictions which arise from an appropri-
ate form of the second law of thermodynamics.
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